
 

UNIT-1 INTRODUCTIONS TO OPERATING SYSTEM  
 

1.1WHAT IS AN OS? 

 The software that controls the hardware 

 The layer of software. 

 An operating system is software that enables applications to interact with a 

computer’s hardware. 

 The operating system is a “black box” between the applications and the 

hardware they run on that ensures the proper result, given appropriate 

inputs. 

 Operating system are primarily resource managers-they manage hardware, 

including processor, memory, input/output devices and communication 

devices. 

 They manage applications and other software abstractions 

OPERATING SYSTEM COMPONENTS AND GOALS 

1.2.1 CORE OPERATING SYSTEM COMPONENTS 

 A user interface with the operating system via one or more user 

applications. A special application called a SHELL OR COMMAND 

INTERPRETER. 

 SHELL are implemented as 

i. Text interface-enable user to issue command from a 

keyboard 

ii. GUI (Graphical user interface)-allow user to point & click, 

drag and drop. 

iii. Command prompt window-enable user through 

commands. 

The software that contains the core components of the operating system is 

referred to as the KERNEL. 
 

Os core components include: 
 

1. Process scheduler: which determines when and for how long a 

process executes on a processor. 

2. Memory manager: which determines when and how memory is 

allocated to processes and what to do when main memory 

becomes fail. 

3. I/O manager: which services input and output requests fromand 

to hardware devices respectively. 

4. Interprocess communication(IPC) manager: which allows 

processes to communicate with one another. 



5. File system manager: which organizes named collections of data 

on storage devices and provides and interface for accessing data 

on those devices. 

6. Multiprogrammed environment: which multiple applications can 

execute concurrently. It determines which processor executes a 

process and for how long that process executes. 

7. Program components which executes independently but 

perform their work in a common memory space are called 

THREADS. 

8. Disk scheduler: responsible for reordering disk I/O request to 

maximize performance and minimize the amount of time a 

process wait for disk I/O. Redundant Array of Independent 

(RAID) system attempts to reduce the time a process waits for 

disk I/O by using multiple disk at once to service I/O request. 

OPERATING SYSTEM GOALS 
 

 Efficiency-high throughput and low turnaround time 

 Robustness-fault tolerance & reliable 

 Scalability- adding resources in order to improve degree of 

multiprogramming 

 Extensibility-adapt to new technonogies 

 Portability- operate on many hardware configurations 

 Security-prevent software and user from accessing services & resources 

without authorization. 

 Interactivity- application to respond quickly to user 

 Usability-potential to serve a user 

OPERATING SYSTEM ARCHITECTURE 
 

(a) Monolithic architecture 

(b) Layered architecture 

(c) Microkernel architecture 

(d) Networked and Distributed architecture 

a) Monolithic architecture 

 It is the earliest and most common operating system architecture. 

 Every component of the operating system is contained in the kernel 

and can directly communicate with any other. 

Advantage: Highly efficient (Direct intercommunication between 
components) 

 
Disadvantage: it is difficult to isolate the source of bugs and other errors. 



Example: OS/360, VMS and Linux 

 

b) Layered architecture 

 The layered approach to operating system attempts to address this 

issue by grouping components that perform similar functions into 

layers. 

 Each layer communicates exclusively with those immediately above 

and below it. 

 Lower level layers provide serices to higher level ones using an 

interface 

Advantage: 

 More modular 

 Components reused throughout the system 

 Modified without requiring any modification to other layers. 

 Simplify validation, debugging and modification. 

Disadvantage: performance degrades. 

Example: THE, (Windows XP, Linux implement some level of layering. 

 

 
c) Microkernel architecture 



 Provides only a small number of services in an attempt to keep the 

kernel small and scalable. 

 The services include low level memory management, interprocess 

communication and basic process synchronization to enable 

processes to cooperate. 

 Most operating system components such as process management, 

networking, file system interaction and device management execute 

outside the kernel with a lower privilege level. 

Advantage: 

High degree of modularity 

Making them extensible, Portable and scalable. 

One or more components can fail without causing the 

operating system to fail 

Disadvantage: performance degrade 

Example: Linux and Windows XP 

 

d) NETWORKED AND DISTRIBUTED OPERATING SYSTEM 

 It enables its processes to access resources that reside on other independent 

computers on a network. 

 The structure of the networked and distributed operating system is often 

based on the client/server model. 

 In a networked environment, a process can execute on the computer on 

which it is created or on another computer on the network. 

 Networked file system are an important component of networked operating 

system. 



 In lower level network file system, user acquires resources on another 

machine by explicitly connecting to that machine and retrieving files. 

 Higher-level network file systems enable user to access remote files as if they 

were on the local system. 

Example: Sun’s Network File System (NFS) and CMU’s Andrew and coda file 

system. 

 

 
Distributed operating system 

 

 It is a single operating system that manages resources on more than one 

computer system. 

 Distributed operating systems are often difficult to implement and require 

complicated algorithms to enable processes to communicate and share data. 

Example: MIT’s Chord operating system and Amoeba operating 

system 
 

CHAPTER-2 

PROCESS CONCEPTS 

 

INTRODUCTION 

DEFINITION OF PROCESS: 

 A Program in execution 

 A asynchronous activity 

 The “animated spirit” of a procedure 

 The “locus of control” of a procedure in execution 

The data structure of the process called a “process descriptor” or a “process control 

block”. 

There are two key concepts 

1. A process is an “entity” – each process has its own address 

space, which consists of a text region, data region and stack 

region. 



Text region: stores the code that the processor execute. 

Data region: stores variable and dynamically allocated memory 

that the process uses during execution. 

Stack region: stores instruction and local variables for active 

procedure calls. 

2. A process is a “program in execution” 

1.6 PROCESS STATES: LIFE CYCLE OF A PROCESS 

 A Process is said to be RUNNING STATE, if it is executing on a processor 

 A Process is said to be READY STATE, if it is execute on a processor 

 A Process is said to be BLOCKED STATE, if it is waiting for some event to 

happen 

The operating system maintains a 

 Ready list for ready process 

 Blocked list for blocked process 

1.7 PROCESS MANAGEMENT 

Operating systems provide fundamental services to processes including  

–Creating processes 

– Destroying processes 

– Suspending processes 

– Resuming processes 

– Changing a process’s priority 

– Blocking processes 

– Waking up processes 

– Dispatching processes 

– Interprocess communication (IPC) 

Process States and State Transitions 

 

Process Control Blocks (Pcbs)/Process Descriptors 
PCBs maintain information that the OS needs to manage the process 

– Typically include information such as 

• Process identification number (PID) 

• Process state 



• Program counter 

• Scheduling priority 

• Credentials 

• A pointer to the process’s parent process 

• Pointers to the process’s child processes 

• Pointers to locate the process’s data and instructions in memory 

• Pointers to allocated resources 

 

 
Process table 

– The OS maintains pointers to each process’s PCB in a systemwide or per-user 

process table 

– Allows for quick access to PCBs 
– When a process is terminated, the OS removes the process from the process table 

and frees all of the process’s resources 

Process Operations 

A process may spawn a new process 

– The creating process is called the parent process 

– The created process is called the child process 

– Exactly one parent process creates a child 

– When a parent process is destroyed, operating systems typically respond in one of 

two ways: 

• Destroy all child processes of that parent 

• Allow child processes to proceed independently of their parents 

Fig. Process creation hierarchy. 

 

Suspend and Resume 
• Suspending a process 

– Indefinitely removes it from contention for time on a processor without being 

destroyed 

– Useful for detecting security threats and for software debugging purposes 

– A suspension may be initiated by the process being suspended or by another process 

– A suspended process must be resumed by another process 

– Two suspended states: 

• suspendedready 

• suspendedblocked 
 



Process state transitions with suspend and resume. 

Context Switching 

– Performed by the OS to stop executing a running process and begin executing a 

previously ready process 

– Save the execution context of the running process to its PCB 

– Load the ready process’s execution context from its PCB 

– Must be transparent to processes 
– Require the processor to not perform any “useful”  computation 

• OS must therefore minimize context-switching time 

– Performed in hardware by some architectures 



Interrupts 
• Interrupts enable software to respond to signals from hardware 

– May be initiated by a running process 

• Interrupt is called a trap 

• Synchronous with the operation of the process 

• For example, dividing by zero or referencing protected memory 

– May be initiated by some event that may or may not be related to the running 

process 

• Asynchronous with the operation of the process 

• For example, a key is pressed on a keyboard or a mouse is moved 

– Low overhead 

• Polling is an alternative approach 

– Processor repeatedly requests the status of each device 

– Increases in overhead as the complexity of the system increases 

Interrupt Processing 
• Handling interrupts 

– After receiving an interrupt, the processor completes execution of the current 

instruction, then pauses the current process 

– The processor will then execute one of the kernel’s interrupthandling functions 

– The interrupt handler determines how the system should respond 

– Interrupt handlers are stored in an array of pointers called the interrupt vector 

– After the interrupt handler completes, the interrupted process is restored and 

executed or the next process is executed 

Figure  Handling interrupts 

Interrupt Classes 
 

• Supported interrupts depend on a system’s architecture 

– The IA-32 specification distinguishes between two types of signals a processor may 

receive: 



• Interrupts 

– Notify the processor that an event has occurred or that an external device’s status 

has changed 

– Generated by devices external to a processor 

• Exceptions 

– Indicate that an error has occurred, either in hardware or as a result of a software 

instruction 

– Classified as faults, traps or aborts 

Figure Common interrupt types recognized in the Intel IA-32 architecture. 

Interprocess Communication 
• Many operating systems provide mechanisms for interprocess communication (IPC) 

– Processes must communicate with one another in multiprogrammed and networked 

environments 

• For example, a Web browser retrieving data from a distant server 
– Essential for processes that must coordinate activities to achieve a common goal 



Signals 
• Software interrupts that notify a process that an event has occurred 

– Do not allow processes to specify data to exchange with other processes 

– Processes may catch, ignore or mask a signal 

• Catching a signal involves specifying a routine that the OS calls when it delivers the signal 

• Ignoring a signal relies on the operating system’s default action to handle the signal 

• Masking a signal instructs the OS to not deliver signals of that type until the process clears 

the signal mask 

Message Passing 
• IPC in distributed systems 

– Transmitted messages can be flawed or lost 

• Acknowledgement protocols confirm that transmissions have been properly received 

• Timeout mechanisms retransmit messages if acknowledgements are not received 

– Ambiguously named processes lead to incorrect message referencing 

• Messages are passed between computers using numbered ports on which processes listen, 

avoiding this problem 

– Security is a significant problem 

• Ensuring authentication 



UNIT-II 
ASYNCHRONOUS CONCURRENT EXECUTION 

 
2.1 Introduction 
• Concurrent execution 

– More than one thread exists in system at once 

– Can execute independently or in cooperation 

– Asynchronous execution 

• Threads generally independent 

• Must occasionally communicate or synchronize 

• Complex and difficult to manage such interactions 

 

2.2 Mutual Exclusion 
Problem of two threads accessing data simultaneously 

– Data can be put in inconsistent state 

• Context switch can occur at anytime, such as before a thread 

finishes modifying value 

– Such data must be accessed in mutually exclusive way 

• Only one thread allowed access at one time 

• Others must wait until resource is unlocked 

• Serialized access 

• Must be managed such that wait time not unreasonable 

 

2.2.1 Java Multithreading Case Study, Part II:A Producer/Consumer 
Relationship in Java 

– One thread creates data to store in shared object 
– Second thread reads data from that object 

• Large potential for data corruption if unsynchronized 
 

Figure 5.1 Buffer interface used in producer/consumer examples 
 



Producer class represents the producer thread in a producer/consumer relationship. 

 



Consumer class represents the consumer thread in a producer/consumer relationship 

 



UnsynchronizedBuffer class maintains the shared integer that is accessed by a producer thread and a 
consumer thread via methods set and get. 

 
SharedBuffer class enables threads to modify a shared object without synchronization. 

 



 
Critical Sections 

• Most code is safe to run concurrently 
• Sections where shared data is modified must be protected 

– Known as critical sections 

– Only one thread can be in its critical section at once 

• Must be careful to avoid infinite loops and blocking inside a critical Section 

 

2.3 Implementing Mutual Exclusion Primitives 
 

• Indicate when critical data is about to be accessed 

– Mechanisms are normally provided by programming language or libraries 

– Delimit beginning and end of critical section 

• enterMutualExclusion 
• exitMutualExclusion 
• Common properties of mutual exclusion primitives 

– Each mutual exclusion machine language instruction is executed indivisibly 

– Cannot make assumptions about relative speed of thread execution 

– Thread not in its critical section cannot block other threads from entering their 

critical sections 

– Thread may not be indefinitely postponed from entering its critical section. 

 

2.4 Software solutions to the Mutual Exlusion problem 
2.4.1 Dekker’s Algorithm(First version) 

 

• First version of Dekker’s algorithm 

– Succeeds in enforcing mutual exclusion 

– Uses variable to control which thread can execute 

– Constantly tests whether critical section is available 

• Busy waiting 

• Wastes significant processor time 

– Problem known as lockstep synchronization 

• Each thread can execute only in strict alternation 



Mutual exclusion implementation – version 1 

 
2.4.2 Dekker’s Algorithm(Second version) 

 

– Removes lockstep synchronization 

– Violates mutual exclusion 

• Thread could be preempted while updating flag variable 

– Not an appropriate solution 



 



2.4.3 Dekker’s Algorithm(Third version) 
 

– Set critical section flag before entering critical section test 

• Once again guarantees mutual exclusion 

– Introduces possibility of deadlock 

• Both threads could set flag simultaneously 

• Neither would ever be able to break out of loop 

– Not a solution to the mutual exclusion problem 

 



2.4.4 Dekker’s Algorithm- Fourth version 
 

– Sets flag to false for small periods of time to yield control 

– Solves previous problems, introduces indefinite postponement 

• Both threads could set flags to same values at same time 

• Would require both threads to execute in tandem (unlikely but possible) 

– Unacceptable in mission- or business-critical systems 

 



 
 

2.4.5 Dekker’s Algorithm( A proper solution) 
 

– Uses notion of favoured threads to determine entry into critical sections 

• Resolves conflict over which thread should execute first 

• Each thread temporarily unsets critical section request flag 

• Favoured status alternates between threads 

– Guarantees mutual exclusion 

– Avoids previous problems of deadlock, indefinite postponement 

 

Dekker’s Algorithm for mutual exclusion 



 



 

2.4.6 Peterson’s Algorithm 
 

• Less complicated than Dekker’s Algorithm 

– Still uses busy waiting, favored threads 

– Requires fewer steps to perform mutual exclusion primitives 

– Easier to demonstrate its correctness 

– Does not exhibit indefinite postponement or deadlock 

Peterson’s Algorithm for mutual exclusion 

 



 
2.4.7 N-Thread Mutual Exclusion:Lamport’s Bakery Algorithm 
• Applicable to any number of threads 

– Creates a queue of waiting threads by distributing numbered “tickets” 

– Each thread executes when its ticket’s number is the lowest of all threads 

– Unlike Dekker’s and Peterson’s Algorithms, the Bakery Algorithm works in 

multiprocessor systems and for n threads 

– Relatively simple to understand due to its real-world analog 



Lamport’s Bakery Algorithm 

 



 
2.5 Hardware Solutions to the Mutual Exclusion Problem 

 

• Implementing mutual exclusion in hardware 

– Can improve performance 

– Can decreased development time 

• No need to implement complex software mutual exclusion solutions like Lamport’s 

Algorithm. 

2.5.1 Disabling Interrupts 
• Disabling interrupts 

– Works only on uniprocessor systems 

– Prevents the currently executing thread from being preempted 

– Could result in deadlock 

• For example, thread waiting for I/O event in critical section 

– Technique is used rarely 

2.5.2 Test-and-Set Instruction 
• Use a machine-language instruction to ensure that mutual exclusion primitives are 

performed indivisibly 

– Such instructions are called atomic 

– Machine-language instructions do not ensure mutual exclusion alone 

• For example, programmers must incorporate favoured threads to avoid indefinite 

postponement 

– Used to simplify software algorithms rather than replace them 

• Test-and-set instruction 

– testAndSet(a, b) copies the value of b to a, then sets b to true 
– Example of an atomic read-modify-write (RMW) cycle 



 



 
 

2.5.3 Swap Instruction 
 

• swap(a, b) exchanges the values of a and b atomically 

• Similar in functionality to test-and-set 

– swap is more commonly implemented on multiple architectures 
 



 
2.6 Semaphores 
• Semaphores 

– Software construct that can be used to enforce mutual exclusion 

– Contains a protected variable 

• Can be accessed only via wait and signal commands 

• Also called P and V operations, respectively 

2.6.1 Mutual Exclusion with Semaphores 
• Binary semaphore: allow only one thread in its critical section at once 

– Wait operation 

• If no threads are waiting, allow thread into its critical section 

• Decrement protected variable (to 0 in this case) 



• Otherwise place in waiting queue 

– Signal operation 

• Indicate that thread is outside its critical section 

• Increment protected variable (from 0 to 1) 

• A waiting thread (if there is one) may now enter 

2.6.2 Thread Synchronization with Semaphores 
• Semaphores can be used to notify other threads that 

events have occurred 

– Producer-consumer relationship 

• Producer enters its critical section to produce value 

• Consumer is blocked until producer finishes 

• Consumer enters its critical section to read value 

• Producer cannot update value until it is consumed 

– Semaphores offer a clear, easy-to-implement solution to this problem 

Producer/consumer relationship implemented with semaphores. 

 



 

2.6.3 Counting Semaphores 
• Counting semaphores 

– Initialized with values greater than one 

– Can be used to control access to a pool of identical resources 

• Decrement the semaphore’s counter when taking resource from pool 

• Increment the semaphore’s counter when returning it to pool 

• If no resources are available, thread is blocked until a resource becomes available 

2.6.4 Implementing Semaphores 
• Semaphores can be implemented at application or kernel level 

– Application level: typically implemented by busy waiting 

• Inefficient– Kernel implementations can avoid busy waiting 

• Block waiting threads until they are ready– Kernel implementations can disable interrupts 

• Guarantee exclusive semaphore access 

• Must be careful to avoid poor performance and deadlock 

• Implementations for multiprocessor systems must use a more sophisticated approach 

2.7 Monitors 
2.7.1 Introduction 
• Recent interest in concurrent programming languages 

– Naturally express solutions to inherently parallel problems 

– Due to proliferation of multiprocessing systems, distributed systems and massively 

parallel architectures 

– More complex than standard programs 

• More time required to write, test and debug 

-Monitor– Contains data and procedures needed to allocate shared resources 

• Accessible only within the monitor 

• No way for threads outside monitor to access monitor data 

Threads return resources through monitors as well 

– Monitor entry routine calls signal 
• Alerts one waiting thread to acquire resource and enter monitor 

– Higher priority given to waiting threads than ones newly arrived 

• Avoids indefinite postponement 



2.7.2 Condition Variables 
• Before a thread can reenter the monitor, the thread calling signal must first exit monitor 

– Signal-and-exit monitor 
• Requires thread to exit the monitor immediately upon signalling 

• Signal-and-continue monitor 

– Allows thread inside monitor to signal that the monitor will soon become available 

– Still maintain lock on the monitor until thread exits monitor 

– Thread can exit monitor by waiting on a condition variable or by completing 

execution of code protected by monitor 

2.7.3 Simple Resource Allocation with Monitors 
• Thread inside monitor may need to wait outside until another thread performs an action 

inside monitor 

• Monitor associates separate condition variable with distinct situation that might cause 

thread to wait 

– Every condition variable has an associated queue 

 
2.7.4 Monitor Example: Circular Buffer 
• Circular buffer implementation of the solution to producer/consumer problem 

– Producer deposits data in successive elements of array 

– Consumer removes the elements in the order in which they were deposited (FIFO) 

– Producer can be several items ahead of consumer 

– If the producer fills last element of array, it must “wrap around” and begin 

depositing data in the first element of array 

Due to the fixed size of a circular buffer 

– Producer will occasionally find all array elements full, in which case the producer 

must wait until consumer empties an array element 

– Consumer will occasionally find all array elements empty, in which case the 

consumer must wait until producer deposits data into an array element 



 
2.7.5 Monitor Example: Readers and Writers 
• Readers 

– Read data, but do not change contents of data 

– Multiple readers can access the shared data at once 

– When a new reader calls a monitor entry routine, it is allowed to proceed as long as 

no thread is writing and no writer thread is waiting to write 

– After the reader finishes reading, it calls a monitor entry routine 

to signal the next waiting reader to proceed, causing a “chain reaction” 

• Writers 

– Can modify data 

– Must have exclusive access 
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   DEADLOCK AND INDEFINITE POSTPONEMENT 

7.1 INTRODUCTION 

1. A process or thread is waiting for a particular event that will not occur is 

called Deadlock. 

2. In System deadlock one or more processes are deadlocked. 

7.2 EXAMPLES OF DEADLOCK 

 Deadlocks can develop in many ways. We have a one process deadlock. Such 

deadlocks are extremely difficult to detect. Deadlocks in real systems involve multiple 

processes for multiple resources of multiple types.  

7.2.1 TRAFFIC DEADLOCK 

 This kind of deadlocks is developed in cities .A number of Automobiles is attempting 

to drive through a busy neighborhood and the traffic is snarled. 

 

  

 

 

 



7.2.2 SIMPLE RESOURCE DEADLOCK  

 An example of simple resource deadlock is resource allocation graph.  

 It shows two processes as rectangles and two resources as circles.  

 An arrow from a resource to a process indicates that the resource is allocated 

to the process 

 . An arrow from a process to a resource indicates that the process is 

requesting, but has not yet been allocated, the resource. 

 

 Process P1 holds resource R1 and needs resource R2 to continue. 

 Process P2 holds resource R2 and needs resource R1 to continue.  

 Each process is waiting for the other to free. This circular wait is characteristic of 

deadlocked systems. 

 

7.2.3 DEADLOCK IN SPOOLING SYSTEMS 

 - Spooling systems are prone to deadlock. 

 Common solution 

  - Restrain input spoolers so that when the spooling file begins to reach some 

saturation threshold, the spoolers do not read in more print jobs. 

 Today’s systems 

 - Printing begins before the job is completed so that a full spooling file can be 

emptied even while a job is still executing. 

 - Same concept has been applied to streaming audio and video. 

 



 

7.2.4 EXAMPLE: DINING PHILOSOPHERS 

Problem statement: 

 Five philosophers sit around a circular table. Each leads a simple life alternating 

between thinking and eating spaghetti. In front of each philosopher is a dish of spaghetti 

that is constantly replenished by a dedicated wait staff. There are exactly five forks on the 

table, one between each adjacent pair of philosophers. Eating spaghetti (in the most proper 

manner) requires that a philosopher use both adjacent forks (simultaneously). Develop a 

concurrent program free of deadlock and indefinite postponement that models the 

activities of the philosophers. 

  void typicalPhilosopher() 
  { 
    while ( true ) 
    { 
     think(); 
     eat(); 
    } // end while 
 
   } // end typicalPhilospher 
 
  Dining philosopher behavior 
 
Constraints: 

– To prevent philosophers from starving: 

 • Free of deadlock 

 • Free of indefinite postponement 

– Enforce mutual exclusion 

 • Two philosophers cannot use the same fork at once 

The problems of mutual exclusion, deadlock and indefinite postponement lie in the 

implementation of method eat. 

 void eat() 
 { 
   pickUpLeftFork(); 
   pickUpRightFork(); 
   eatForSomeTime(); 
   putDownRightFork(); 
   putDownLeftFork(); 
  } // eat 
 

  Implementation of method eat 



7.3 RELATED PROBLEM: INDEFINITE POSTPONEMENT 

o A process may be delayed indefinitely while other processes receive the 

system's attention.  

o This situation, called indefinite postponement, indefinite blocking, or 

starvation. 

o Indefinite postponement may occur due to biases in a system’s resource 

scheduling policies. 

o Some systems prevent indefinite postponement by increasing a process's 

priority gradually as it waits for a resource —this technique is called aging. 

 

7.4 RESOURCE CONCEPTS 

o Resources that are preemptible, such as processors and main memory. 

Resources can be removed from a process without loss of work. 

o Certain resources are nonpreemptible; they cannot be removed from the 

processes to which they are assigned until the processes voluntarily release 

them.  

o For example, tape drives and optical scanners. 

Reentrant code 

 – Cannot be changed while in use. 

 – May be shared by several processes simulta 

neously. 

Serially reusable code 

 – May be changed but is reinitialized each time it is used. 

 – May be used by only one process at a time. 

 

7.5 FOUR NECESSARY CONDITIONS FOR DEADLOCK 

1. Mutual exclusion condition 

 – Resource may be acquired exclusively by only one process at a time. 

2. Wait-for condition (hold-and-wait condition) 

 – Process that has acquired an exclusive resource may hold that resource while the  

     process waits to obtain other resources 

3.  No-preemption condition 

 – Once a process has obtained a resource, the system cannot remove it from the    

     process’s control until the process has finished using the resource. 



4.  Circular-wait condition 

 – Two or more processes are locked in a “circular chain” in which each process is    

     waiting for one or more resources that the next process in the chain is holding. 

 

7.6 DEADLOCK SOLUTIONS 

 There are four major areas of interest in deadlock research. 

1. Deadlock prevention 

 In deadlock prevention is to condition a system to remove any possibility of 

deadlocks occurring, but prevention methods can often result in poor resource 

utilization. 

2. Deadlock avoidance 

  Avoidance methods do not precondition the system to remove all possibility  

 of deadlock. 

3. Deadlock detection 

  If a deadlock has occurred, and to identify the processes and resources that 

 are involved. 

4. Deadlock recovery 

  Deadlock recovery methods are used to clear deadlocks from a system so 

 that it may operate free them, and so that the deadlocked processes may complete 

 their execution and free their resources. 

 

7.7 DEADLOCK PREVENTION 

  A deadlock cannot occur if a system denies any of the four necessary 

 conditions, suggested the following deadlock prevention strategies: 

 • Each process must request all its required resources at once and cannot proceed 

 until all have been granted. 

 • If a process holding certain resources is denied a further request, it must release 

 its original resources and, if necessary, request them again together with the 

 additional resources. 

 • A linear ordering of resources must be imposed on all processes; i.e., if a process 

 has been allocated certain resources, it may subsequently request only those 

 resources later in the ordering. 

 

 



7.7.1 DENYING THE "WAIT-FOR" CONDITION 

 - All of the resources a process needs to complete its task must be requested at once.  

 - If all the resources needed by a process are available, then the system may grant 

them all to the process at once. If they are not all available, then the process must wait until 

they are. 

 - This leads to inefficient resource allocation. 

 - One approach to getting better resource utilization in these circumstances is to 

divide a program into several threads that run relatively independently of one another. 

 - Another way to avoid this is to handle the needs of the waiting processes in first-

come-first served order. 

 

7.7.2 DENYING THE "NO-PREEMPTION" CONDITION 

o The second strategy denies the "no preemption" condition. 

o Suppose a system does allow processes to hold resources while requesting 

additional resources.  

o As long as sufficient resources remain available to satisfy all requests, the 

system cannot deadlock.    

o When a request for additional resources cannot be satisfied. Now a process 

holds resources that a second process may need in order to proceed, while 

the second process may hold resources needed by the first process—a two-

process deadlock. 

o Processes may lose work when resources are preempted. This can lead to 

substantial overhead as processes must be restarted. 

 

7.7.3 DENYING THE "CIRCULAR-WAIT" CONDITION 

 In this strategy, we assign a unique number to each resource (e.g., a disk 

drive, printer, scanner, and file) that the system manages and we create a 

linear ordering of resources. 

 One disadvantage of this strategy is that it is not as flexible or dynamic as we 

might desire. 

 Resources must be requested in ascending order by resource number.  

 Resource numbers are assigned for the computer system and must be "lived 

with" for long periods (i.e.,months or even years).  



 If new resources are added or old ones removed at an installation, existing 

programs and systems may have to be rewritten.  

 Requires the programmer to determine the ordering or resources for each system. 

 

 



7.8  DEADLOCK AVOIDANCE WITH DIJKSTRA'S BANKER'S ALGORITHM 

 The Banker's Algorithm defines how a particular system can prevent deadlock by 

controlling how resources are distributed to users. The Banker's Algorithm prevents 

deadlock in operating systems that exhibit the following properties: 

 • The operating system shares a fixed number of resources, t, among a fixed number  

    of processes, n. 

 • Each process specifies in advance the maximum number of resources that it     

    requires to complete its work. 

 • The operating system accepts a process's request if that process's maximum need 

   does not exceed the total number of resources available in the system, t (i.e., the   

   process cannot request more than the total number of resources available in the   

   system). 

 • Sometimes, a process may have to wait to obtain an additional resource, but the   

   operating system guarantees a finite wait time. 

 • If the operating system is able to satisfy a process's maximum need for resources,    

    then the process guarantees that the resource will be used and released to the  

    operating system within a finite time. 

 The system is said to be in a safe state if the operating system can guarantee that all 

current processes can complete their work within a finite time. If not, then the system is 

said to be in an unsafe state. 

We also define four terms that describe the distribution of resources among processes. 

 • Let max(Pi) be the maximum number of resources that process Pi requires during   

    its execution. For example, if process P3 never requires more than two resources,  

    then max(P3) = 2. 

 • Let loan(Pi) represent process Pi's current loan of a resource, where its  loan is the 

   number of resources the process has already obtained from the system. For 

 example, if the system has allocated four resources to process P5, then loan(P5) = 4. 

 • Let claim(Pi) be the current claim of a process, where a process's claim is equal to 

 its maximum need minus its current loan. For example, if process P7 has a 

 maximum need of six resources and a current loan of four resources, then we have 

 claim(P7) = max( P7) - loan(P7) = 6 - 4 = 2 

 • Let a be the number of resources still available for allocation. This is equivalent 

 to the total number of resources (t) minus the sum of the loans to all 

 the processes in the system, i.e., 



     

 

7.8.1 EXAMPLE OF A SAFE STATE 

 

   

 

o This state is "safe" because process P2 currently has a loan of four resources 

and will eventually need a maximum of six, or two additional resources. 

o The system has 12 resources, of which 10 are currently in use and two are 

available. If the system allocates these two available resources to P2, fulfilling 

P2's maximum need, then P2 can run to completion. 

o After P2 finishes, it will release six resources, enabling the system to 

immediately fulfill the maximum needs of P1 (3) and P3 (3), enabling both of 

those processes to finish. 

 

7.8.2 EXAMPLE OF AN UNSAFE STATE 

  

 

  



o We sum the values of the third column and subtract from 12 to obtain a value 

of one for a. 

o At this point, no matter which process requests the available resource, we 

cannot guarantee that all three processes will finish.  

o In fact, suppose process P1 requests and is granted the last available 

resource. 

o A three-way deadlock could occur if indeed each process needs to request at 

least one more resource before releasing any resources to the pool.  

o It is important to note here that an unsafe state does not imply the existence 

of deadlock, nor even that deadlock will eventually occur. 

 

7.8.3 EXAMPLE OF SAFE-STATE-TO-UNSAFE-STATE TRANSITION 

o The current value of a is 2.  

o Now suppose that process P3 requests an additional resource.  

o If the system were to grant this request, then the new state would be as in 

Fig. 7.8. 

o Now, the current value of a is 1, which is not enough to satisfy the current 

claim of any process, so the state is now unsafe. 

 

 

 

7.8.4 BANKER'S ALGORITHM RESOURCE ALLOCATION 

 The "mutual exclusion," "wait-for," and "no-preemption" conditions are allowed—

processes are indeed allowed to hold resources while requesting and waiting for 

additional resources, and resources may not be preempted from a process holding 

those resources. 



 

 

 The system may either grant or deny each request. 

 If a request is denied, that process holds any allocated resources and waits for a 

finite time until that request is eventually granted.  

 The system grants only requests that result in safe states. 

 Resource requests that would result in unsafe states are repeatedly denied until 

they can eventually be satisfied. 

 
 
7.8.5 WEAKNESSES IN THE BANKER'S ALGORITHM 
 
 The algorithm has a number of weaknesses. 

 • It requires that there be a fixed number of resources to allocate. 

 • The algorithm requires that the population of processes remains fixed. In today's   

       interactive and multiprogrammed systems the process population is constantly  

      changing. 

 • The algorithm requires that the banker (i.e., the system) grant all requests within a 

    "finite time."  

 • Similarly, the algorithm requires that clients (i.e., processes) repay all loans (i.e.,   

      return all resources) within a "finite time."  

 • The algorithm requires that processes state their maximum needs in advance.   

    With resource allocation becoming increasingly dynamic, it is becoming more  

     difficult to know a process's maximum needs. 

For the reasons stated above, Dijkstra's Banker's Algorithm is not implemented in today's 

operating systems. 

 

7.9 DEADLOCK DETECTION 

  Deadlock detection is the process of determining that a deadlock exists and 

identifying the processes and resources involved in t h e deadlock. 

 Deadlock detection algorithms can incur significant runtime overhead. 

 

7.9.1 RESOURCE-ALLOCATION GRAPHS 

 In Fig. 7.10(a), process P1 is requesting a resource of type R1. The arrow from P1 

indicating that the resource request is under consideration. 



 In Fig. 7.10(b), process P2 has been allocated a resource of type R2 (of which there 

are two).The arrow is drawn from the small circle within the large circle R2 to 

the square P2, to indicate that the system has allocated a specific resource. 

 Figure 7.10(c) indicates a situation somewhat closer to a potential deadlock. 

 Process P3 is requesting a resource of type R3, but the system has allocated the only 

R3 resource to process P4. 

  

  

 

   Figure 7.10 | Resource-allocation and request graphs 

 

 Figure 7.10(d) indicates a deadlocked system in which process P5 is requesting a 

resource of type R4, the only one of which the system has allocated to process P6. 

 Process P6, is requesting a resource of type R5, the only one of which the system has 

allocated to process P5.  

 This is an example of the "circular wait" necessary for a deadlocked system. 

 

7.9.2 REDUCTION OF RESOURCE-ALLOCATION GRAPHS 



  One technique useful for detecting deadlocks involves graph reductions. If a 

process's resource requests may be granted, then we say that a graph may be reduced by 

that process. This reduction is equivalent to showing how the graph would look if the 

process was allowed to complete its execution and return its resources to the system. 

 If a graph can be reduced by all its processes, then there is no deadlock. If a graph 

cannot be reduced by all its processes, then the irreducible processes constitute the set of 

deadlocked processes in the graph. 

Figure 7.11 shows a series of graph reductions demonstrating that a particular set of 

processes is not deadlocked. 



 

 

  Figure 7.11 | Graph reductions determining that no deadlock exists 

 

7.10 DEADLOCK RECOVERY 

 Recovery from deadlock is complicated by several factors. First, it may not be clear 

that the system has become deadlocked. 



 Second, most systems do not provide the means to suspend a process indefinitely, 

remove it from the system and resume it (without loss of work) at a later time. Some 

processes, in fact, such as real-time processes that must function continuously, are simply 

not amenable to being suspended and resumed. 

 Finally, recovery from deadlock is complicated because the deadlock could involve 

many processes (tens, or even hundreds). 

Suspend/resume mechanism 

 The suspend/resume mechanism allows the system to put a temporary hold on a 

process (temporarily preempting its resources), and, when it is safe to do so, to resume the 

held process without loss of work. 

Checkpoint/rollback 

 Checkpoint/rollback copes with system failures and deadlocks by attempting to 

preserve as much data as possible from each terminated process. Checkpoint/rollback 

facilitates suspend/resume capabilities by limiting the loss of work to the time at which the 

last checkpoint (i.e., saved state of the system) was taken. 
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PROCESSOR SCHEDULING 

8.1 INTRODUCTION 



 A system has a choice of processes to execute, it must have a strategy —called a 

processor scheduling policy (or discipline) —for deciding which process to run at a 

given time.  

 A scheduling policy should attempt to satisfy certain performance criteria, such as 

maximizing the number of processes that complete per unit time (i.e., throughput), 

minimizing the time each process waits before executing (i.e., latency),  preventing 

indefinite postponement of processes, ensuring that each process completes before its 

stated deadline, or maximizing processor utilization. 

 

8.2 SCHEDULING LEVELS 

 We consider three levels of scheduling. High-level scheduling—also called job 

scheduling or long-term scheduling—determines which jobs the system allows to 

compete actively for system resources. This level is sometimes called admission 

scheduling, because it determines which jobs gain admission to the system. Once 

admitted, jobs are initiated and become processes or groups of processes 

 The intermediate-level scheduling policy determines which processes shall be 

allowed to compete for processors. This policy responds to short-term fluctuations in 

system load. 

 A system's low-level scheduling policy determines which active process the 

system will assign to a processor when one next becomes available. Low-level scheduling 

policies often assign a priority to each process. The low-level scheduler (also called the 

dispatcher) also assigns (i.e., dispatches) a processor to the selected process. 

 

  

 

 

 

 

 

 

 

 

 Scheduling Levels 

 



 

 

 

8.3 PREEMPTIVE VS. NONPREEMTPIVE SCHEDULING 

 A scheduling discipline is nonpreemptive if, once the system has assigned a 

processor to a process, the system cannot remove that processor from that process. A 

scheduling discipline is preemptive if the system can remove the processor from the 

process it is running. 

 Under a nonpreemptive scheduling discipline, each process, once given a processor, 

runs to completion or until it voluntarily relinquishes its processor. Under a preemptive 

scheduling discipline, the processor may execute a portion of a process's code and then 

perform a context switch. 

8.4 PRIORITIES 

 Static priorities remain fixed, so static-priority-based mechanisms are relatively 



easy to implement and incur relatively low overhead. Such mechanisms are not, however, 

responsive to changes in environment, even those that could increase throughput and 

reduce latency. 

 Dynamic priority mechanisms are responsive to change. For example, the system 

may want to increase the priority of a process that holds a key resource needed by a 

higher-priority process. After the first process relinquishes the resource, the system lowers 

the priority, so that the higher-priority process may execute. Dynamic priority schemes are 

more complex to implement and have greater overhead than static schemes. The overhead 

is justified by the increased responsiveness of the system. 

 

8.5 SCHEDULING OBJECTIVES 

 Depending on the system, the user and designer might expect the scheduler to: 

 • Maximize throughput. A scheduling discipline should attempt to service the     

      maximum number of processes per unit time. 

 • Maximize the number of interactive processes receiving "acceptable" response times. 

 • Maximize resource utilization. The scheduling mechanisms should keep the    

     resources of the system busy. 

 • Avoid indefinite postponement. A process should not experience an unbounded wait 

    time  before or while receiving service. 

 • Enforce priorities. If the system assigns priorities to processes, the scheduling 

 mechanism should favor the higher-priority processes. 

 • Minimize overhead. Interestingly, this is not generally considered to be one of the   

   most important objectives. Overhead often results in wasted resources. Overhead   

    can greatly improve overall system performance. 

 • Ensure predictability. By minimizing the statistical variance in process response   

     times, a system can guarantee that processes will receive predictable service   

     levels (see the Operating Systems Thinking feature, Predictability). 

 Despite the differences in goals among systems, many scheduling disciplines exhibit 

similar properties: 

 • Fairness. A scheduling discipline is fair if all similar processes are treated the 

 same, and no process can suffer indefinite postponement due to scheduling 

 issues (see the Operating Systems Thinking feature, Fairness). 

 • Predictability. A given process always should run in about the same amount of 

 time under similar system loads. 



 • Scalability. System performance should degrade gracefully (i.e., it should  not 

 immediately collapse) under heavy loads. 

 

8.6 SCHEDULING CRITERIA 

 A processor-bound process tends to use all the processor time that the system 

allocates for it. An I/O-bound process tends to use the processor only briefly before 

generating an I/O request and relinquishing it. Processor-bound processes spend most of 

their time using the processor; I/O-bound processes spend most of their time waiting for 

external resources (e.g., printers, disk drives, network connections, etc.) to service their 

requests 

 A batch process contains work for the system to perform without interacting with 

the user. An interactive process requires frequent inputs from the user. The system 

should provide good response times to an interactive process, whereas a batch process 

generally can suffer reasonable delays. 

 

8.7 SCHEDULING ALGORITHMS 

 These algorithms decide when and for how long each process runs; they make 

choices about preemptibility, priorities, running time, time-to-completion, fairness and 

other process characteristics. 

8.7.1 FIRST-IN-FIRST-OUT (FIFO) SCHEDULING 

   

 

 
 
 FIFO is nonpreemptive — once a process has a processor, the process runs to 

completion. FIFO is fair in that it schedules processes according to their arrival times, so all 

processes are treated equally, but somewhat unfair because long processes make short 

processes wait, and unimportant processes make important processes wait. FIFO is rarely 

used as a master scheme in today's systems. 

 

8.7.2 ROUND-ROBIN (RR) SCHEDULING 



 Processes are dispatched FIFO but are given a limited amount of processor time 

called a time slice or a quantum. If a process does not complete before its quantum 

expires, the system preempts it and gives the processor to the next waiting process. The 

system then places the preempted process at the back of the ready queue. 

 Process P1 is dispatched to a processor, where it executes either until completion, in 

which case it exits the system, or until its time slice expires, at which point it is preempted 

and placed at the tail of the ready queue. 

 

 

 
 

Selfish Round-Robin 

 Kleinrock discussed a variant of round-robin called selfish round-robin (SRR) that 

uses aging to gradually increase process priorities over time. In this scheme, as each 

process enters the system, it first resides in a holding queue, where it ages until the its 

priority reaches the level of processes in the active queue. At this point, it is placed in the 

active queue and scheduled round-robin with other processes in the queue. The scheduler 

dispatches only processes in the active queue, meaning that older processes are favored 

over those that have just entered the system. 

Quantum Size 

 The system as the quantum gets either extremely large or extremely small. As the 

quantum gets large, processes tend to receive as much time as they need to complete, so 

the round-robin scheme degenerates to FIFO. As the quantum gets small, context-switching 

overhead dominates. 

 This maximizes I/O utilization and provides relatively rapid response times for 

interactive processes. It does so with minimal impact to processor-bound processes, which 

continue to get the lion's share of processor time because I/O-bound processes block soon 

after executing. 

 



8.7.3 SHORTEST-PROCESS-FIRST (SPF) SCHEDULING 

 Shortest-process-first (SPF) is a nonpreemptive scheduling discipline in which the 

scheduler selects the waiting process with the smallest estimated run-time-to-completion. 

SPF reduces average waiting time over FIFO. 

 A key problem with SPF is that it requires precise knowledge of how long a process 

will run, and this information usually is not available. Therefore, SPF must rely on user- or 

system-supplied run-time estimates. 

 Another problem with relying on user process duration estimates is that users 

may supply small (perhaps inaccurate) estimates so that the system will give their 

programs higher priority. 

 SPF derives from a discipline called short job first (SJF), which might have worked 

well scheduling jobs in factories but clearly is inappropriate for low-level scheduling in 

operating systems. SPF, like FIFO, is nonpreemptive and thus not suitable for environments 

in which reasonable response times must be guaranteed. 

 

8.7.4 HIGHEST-RESPONSE-RATIO-NEXT (HRRN) SCHEDULING 

 Brinch Hansen developed the highest-response-ratio-next (HRRN) policy that 

corrects  some of the weaknesses in SPF.  HRRN is a nonpreemptive scheduling discipline 

in which each process's priority is a function not only of its service time but also of its time 

spent waiting for service.  Once a process obtains it, the process runs to completion. HRRN 

calculates dynamic priorities according to the formula 

 

    

 Because the service time appears in the denominator, shorter processes receive 

preference. However, because the waiting time appears in the numerator, longer processes 

that have been waiting will also be given favorable treatment. This technique is similar to 

aging. 

 

8.7.5 SHORTEST-REMAINING-TIME (SRT) SCHEDULING 

 Shortest-remaining-time (SRT) scheduling is the preemptive counterpart of SPF 

that attempts to increase throughput by servicing small arriving processes. 

  



 In SRT, the scheduler selects the process with the smallest estimated run-time-to-

completion. In SPF, once a process begins executing, it runs to completion. In SRT, a newly 

arriving process with a shorter estimated run-time preempts a running process with a 

longer run-time-to-completion. 

 Again, SRT requires estimates of future process behavior to be effective, and the 

designer must account for potential user abuse of this system scheduling strategy. 

 The SRT algorithm offers minimum wait times in theory, but in certain situations, 

due to preemption overhead, SPF might perform better.  The SRT discipline would perform 

the preemption, but this may not be the optimal choice. One solution is to guarantee that a 

running process is no longer preemptible when its remaining run time reaches a low-end 

threshold. 

 

8.7.6 MULTILEVEL FEEDBACK QUEUES 

 A new process enters the queuing network at the tail of the highest queue. The 

process progresses through that queue in FIFO order until the process obtains a processor. 

If  the process completes its execution, or if it relinquishes the processor to wait for I/O 

completion or the completion of some other event, exits the queuing network. If a process's 

quantum expires before the process voluntarily relinquishes the processor, the system 

places the process at the tail of the next lower-level queue. As long as the process uses the 

full quantum provided at each level, it continues to move to the tail of the next lower queue.  

 In many multilevel feedback schemes, the scheduler increases a process's quantum 

size as the process moves to each lower-level queue. Thus, the longer a process has been in 

the queuing network, the larger the quantum it receives each time it obtains the processor. 

 One common variation of the multilevel feedback queuing mechanism is to have a 

process circulate round-robin several times through each queue before it moves to the next 

lower queue. Also, the number of cycles through each queue may be increased as the 

process moves to the next lower queue. 

 Multilevel feedback queuing is a good example of an adaptive mechanism, 

i.e., one that responds to the changing behavior of the system it controls.  Adaptive 

mechanisms generally require more overhead than nonadaptive ones, but the resulting 

sensitivity to changes in the system makes the system more responsive and helps justify 

the increased overhead. 

 

 



 

  

 

 

8.7.7 FAIR SHARE SCHEDULING 

 Fair share scheduling (FSS) supports scheduling across such sets of processes. 

Fair share scheduling enables a system to ensure fairness across groups of processes by 

restricting each group to a certain subset of the system resources. 

 UNIX considers resource-consumption rates across all processes. Under FSS, 

however, the system apportions the resources to various fair share  groups . It distributes 

resources not used by one fair share group to other fair share groups in proportion to their 

relative needs. 



 Each process has a priority, and the scheduler associates processes of a given 

priority with a priority queue for that value. The process scheduler selects the ready 

process at the head of the highest-priority queue. 

 

 

 

 

 

 

 

 Kernel priorities are high and apply to processes executing in the kernel; user 

priorities are lower. Disk events receive higher priority than terminal events. The 

scheduler assigns the user priority as the ratio of recent processor usage to elapsed real 

time; the lower the elapsed time, the higher the priority. 

 The fair share groups are prioritized by how close they are to achieving their 

specified resource-utilization goals. Groups doing poorly receive higher priority; 

groups doing well, lower priority. 
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DISK PERFORMANCE OPTIMIZATION 
 

12.1 INTRODUCTION 

 • Secondary storage is one common bottleneck 

  – Improvements in secondary storage performance significantly boost   

  overall system performance 

  – Solutions can be both software- and hardware-based. 

12.4 WHY DISK SCHEDULING IS NECESSARY 

 • First-come-first-served (FCFS) scheduling has major drawbacks 

  – Seeking to randomly distributed locations results in long waiting times 

  – Under heavy loads, system can become overwhelmed 

 • Requests must be serviced in logical order to minimize delays 

  – Service requests with least mechanical motion 

 • The first disk scheduling algorithms concentrated on minimizing seek times, the   

       component of disk access that had the highest latency 

 • Modern systems perform rotational optimization as well 

   

 

 

 



12.5 DISK SCHEDULING STRATEGIES 

- A system's disk scheduling strategy depends on the system objectives, but most 

strategies are evaluated by the following criteria: 

 • Throughput—the number of requests serviced per unit time 

 • Mean response time—the average time spent waiting for a request to be serviced 

 • Variance of response times—& measure of the predictability of response times.   

- Each disk request should be serviced within an acceptable time period. 

- To demonstrate the result of each policy on an arbitrary series of requests.  

- The arbitrary series of requests is intended to demonstrate how each policy orders disk 

requests; it does not necessarily indicate the relative performance of each policy in a real 

system. 

  

 In the examples that follow, we assume that the disk contains 100 cylinders, 

numbered 0-99, and that the read/write head is initially located at cylinder 63, unless 

stated otherwise. 

 

 



12.5.1 FIRST-COME-FIRST-SERVED (FCFS) DISK SCHEDULING 

 FCFS scheduling uses a FIFO queue so that requests are serviced in the order in 

which they arrive. 

 – Advantages 

  • Fair 

  • Prevents indefinite postponement 

  • Low overhead 

 – Disadvantages 

  • Potential for extremely low throughput 

 – FCFS typically results in a random seek pattern because it does not reorder      

    requests to reduce service delays 

   

  

12.5.2 SHORTEST-SEEK-TIME-FIRST (SSTF) DISK SCHEDULING 

 Shortest-seek-time-first (SSTF) scheduling next services the request that is closest 

to the read-write head's current cylinder. 

 – Advantages 

  • Higher throughput and lower response times than FCFS 

  • Reasonable solution for batch processing systems 

 – Disadvantages 

  • Does not ensure fairness 

  • Possibility of indefinite postponement   



  • High variance of response times 

  • Response time generally unacceptable for interactive systems 

  

12.5.3 SCAN DISK SCHEDULING 

 SCAN chooses the request that requires the shortest seek distance in a 

preferred direction.  

 If the preferred direction is currently outward, the SCAN strategy chooses 

the shortest seek distance in the outward direction.  

 SCAN does not change its preferred direction until it reaches the outermost 

cylinder or the innermost cylinder. In this sense, it is called the elevator 

algorithm. 

 SCAN behaves much like SSTF in terms of high throughput and good mean 

 response times. arriving requests can be serviced before waiting 

 requests, both SSTF and SCAN can suffer indefinite postponement. 

  



12.5.4 C-SCAN DISK SCHEDULING 

 When the arm has completed its inward sweep, it jumps (without servicing 

requests) to the outermost cylinder, then resumes its inward sweep, processing 

requests.  

 C-SCAN maintains high levels of throughput while further limiting variance of 

response times by avoiding discrimination against the innermost and outermost 

cylinders. 

             

 The best disk scheduling policy might operate in two stages. Under a light load, the 

SCAN policy is best. Under medium to heavy loads, C-SCAN.  

 C-SCAN with rotational optimization handles heavy loading conditions effectively. 

 

12.5.5 FSCAN AND N-STEP SCAN DISK SCHEDULING 

 FSCAN uses the SCAN strategy to service only those requests waiting when a 

particular sweep begins (the "F" stands for "freezing" the request queue at a certain 

time).  

 Requests arriving during a sweep are grouped together and ordered for optimum 

service during the return sweep. 



   

  

 N-Step SCAN services the first n requests in the queue using the SCAN strategy. 

 When n-1, N-Step SCAN degenerates to FCFS.  

 As n approaches infinity, N-Step SCAN degenerates to SCAN. 

   

 

 FSCAN and N-Step SCAN offer good performance due to high throughput and low 

mean response times. 

 

12.5.6 LOOK AND C-LOOK DISK SCHEDULING 

• LOOK: Improvement on SCAN scheduling 

 – Only performs sweeps large enough to service all requests 

  • Does move the disk arm to the outer edges of the disk if no requests 

      for those regions are pending 

  • Improves efficiency by avoiding unnecessary seek operations 

  • High throughput 



• C-LOOK improves C-SCAN scheduling 

 – Combination of LOOK and C-SCAN 

 – Lower variance of response times than LOOK, at the expense of throughput. 

    

 

  SEEK OPTIMIZATION STRATEGIES SUMMARY 

  

 

12.6 ROTATIONAL OPTIMIZATION 

 • Seek time formerly dominated performance concerns 

  – Today, seek times and rotational latency are the same order of magnitude 

 • Recently developed strategies attempt to optimization disk performance by    

     reducing rotational latency 

 • Important when accessing small pieces of data distributed throughout the disk   

    surfaces 



 

12.6.1 SLTF SCHEDULING 

 • Shortest-latency-time-first scheduling 

  – On a given cylinder, service request with shortest rotational latency first 

  – Easy to implement 

  – Achieves near-optimal performance for rotational latency 

   

12.6.2 SPTF AND SATF SCHEDULING 

 • Shortest-positioning-time-first scheduling 

  – Positioning time: Sum of seek time and rotational latency 

  – SPTF first services the request with the shortest positioning time 

  – Yields good performance 

  – Can indefinitely postpone requests 

  



 

 

 

• Shortest-access-time-first scheduling 

  – Access time: positioning time plus transmission time 

  – High throughput 

 • Again, possible to indefinitely postpone requests 

 • Both SPTF and SATF can implement LOOK to improve performance 

 • Weakness 

  – Both SPTF and SATF require knowledge of disk performance    

  characteristics which might not be readily available due to error correcting 

  data and transparent reassignment of bad sectors 
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   FILE AND DATABASE SYSTEMS 
 
13.1 INTRODUCTION 

 • Files 

  – Named collection of data that is manipulated as a unit 

  – Reside on secondary storage devices 

 • Operating systems can create an interface that facilitates navigation of a user’s  

    files 

  – File systems can protect such data from corruption or total loss from  

  disasters 

  – Systems that manage large amounts of shared data can benefit from   

  databases as an alternative to files. 

 

13.2 DATA HIERARCHY 

 • Information is stored in computers according to a data hierarchy. 

 • Lowest level of data hierarchy is composed of bits 

  – Bit patterns represent all data items of interest in computer systems 

 • Next level in the data hierarchy is fixed-length patterns of bits such as bytes,  

 characters and words 

  – Byte: typically 8 bits 

  – Word: the number of bits a processor can operate on at once 

  – Characters map bytes (or groups of bytes) to symbols such as letters, 

  numbers, punctuation and new lines 

 • Three most popular character sets in use today: ASCII, EBCDIC and Unicode 

  – Field: a group of characters 

  – Record: a group of fields 

  – File: a group of related records 

 • Highest level of the data hierarchy is a file system or database 

 • A volume is a unit of data storage that may hold multiple files. 

 

13.3 FILES 

 A file is a named collection of data that may be manipulated as a unit by operations 

such as 

 • open —Prepare a file to be referenced. 



 • close —Prevent further reference to a file until it is reopened. 

 • create — Create a new file. 

 • destroy —Remove a file. 

 • copy—Copy the contents of one file to another. 

 • rename—Change the name of a file. 

 • list—Print or display the contents of a file. 

Individual data items within the file may be manipulated by operations like 

 • read—Copy data from a file to a process's memory. 

 • write —Copy data from a process's memory to a file. 

 • update—Modify an existing data item in a file. 

 • insert—Add a new data item to a file. 

 • delete —Remove a data item from a file. 

Files may be characterized by attributes such as 

 • size —the amount of data stored in the file. 

 • location—the location of the file (in a storage device or in the system's logical 

 file organization). 

 • accessibility—restrictions placed on access to file data. 

 • type—how the file data is used. For example, an executable file contains 

 machine instructions for a process. A data file may specify the application 

 that is used to access its data. 

 • volatility—the frequency with which additions and deletions are made to a 

 file. 

 • activity—the percentage of a file's records accessed during a given period 

 of time. 

 

13.4 FILE SYSTEMS 

 A file system organizes files and manages access to data.3 File systems are 

responsible  for: 

 • File management—providing the mechanisms for files to be stored, referenced, 

  shared, and secured. 

 • Auxiliary storage management —allocating space for files on secondary or 

  tertiary storage devices. 

 



 • File integrity mechanisms —ensuring that the information stored in a file is 

 uncorrupted. When file integrity is assured, files contain only the information 

 that they are intended to have. 

 • Access methods—how the stored data can be accessed. 

 The mechanism tor sharing files should provide various types of controlled access 

such as read  access, write access, execute access or various combinations of these. 

 • File system characteristics 

  – Should exhibit device independence: 

  • Users should be able to refer to their files by symbolic names  

  rather than having to use physical device names 

  – Should also provide backup and recovery capabilities to prevent either  

  accidental loss or malicious destruction of information 

  – May also provide encryption and decryption capabilities to make 

  information useful only to its intended audience 

 

13.4.1 DIRECTORIES 

 • Directories: 

  – Files containing the names and locations of other files in the file system, to  

  organize and quickly locate files 

 • Directory entry stores information such as: 

  – File name 

  – Location 

  – Size 

  – Type 

  – Accessed 

  – Modified and creation times 

  

   



• Single-level (or flat) file system: 

 – Simplest file system organization 

 – Stores all of its files using one directory 

 – No two files can have the same name 

 – File system must perform a linear search of the directory contents to locate   

 each file, which can lead to poor performance 

• Hierarchical file system: 

 – A root indicates where on the storage device the root directory begins 

 – The root directory points to the various directories, each of which contains an  

 entry for each of its files 

 – File names need be unique only within a given user directory 

 – The name of a file is usually formed as the pathname from the root directory to the 

 file 

   

  

 

• Working directory 

 – Simplifies navigation using pathnames 

 – Enables users to specify a pathname that does not begin at the root directory (i.e.,  

 a relative path) 

 – Absolute path (i.e., the path beginning at the root) = working  directory + relative 

 path 

 



  

• Link: a directory entry that references a data file or directory located in a different 

directory 

 – Facilitates data sharing and can make it easier for users to access files  located 

 throughout a file system’s directory structure 

 – Soft link: directory entry containing the pathname for another file 

 – Hard link: directory entry that specifies the location of the file  

 (typically a block number) on the storage device 

 – Because a hard link specifies a physical location of a file, it references invalid data 

 when the physical location of its corresponding file changes 

 – Because soft links store the logical location of the file in the file  system, they do 

 not require updating when file data is moved 

 – However, if a user moves a file to different directory or renames the file, any soft 

 links to that file are no longer valid 

 

  

 

 

 

 



13.4.2 METADATA 

 • Metadata 

  – Information that protects the integrity of the file system 

  – Cannot be modified directly by users 

 • Many file systems create a superblock to store critical information that protects 

 the integrity of the file system 

  – A superblock might contain: 

 • The file system identifier 

 • The location of the storage device’s free blocks 

  – To reduce the risk of data loss, most file systems distribute redundant  

  copies of the superblock throughout the storage device 

 • File open operation returns a file descriptor 

  – A non-negative integer index into the open-file table 

 • From this point on, access to the file is directed through the file descriptor 

 • To enable fast access to file-specific information such as permissions, the open-file  

 table often contains file control blocks, also called file attributes: 

  – Highly system-dependent structures that might include the file’s symbolic  

  name, location in secondary storage, access control data and so on 

 

13.4.3 MOUNTING 

 • Mount operation 

  – Combines multiple file systems into one namespace so that they can be  

  referenced from a single root directory 

  – Assigns a directory, called the mount point, in the native file system to the  

  root of the mounted file system 

 • File systems manage mounted directories with mount tables: 

  – Contain information about the location of mount points and the devices  

  to which they point 

 • When the native file system encounters a mount point, it uses the mount table to  

 determine the device and type of the mounted file system 

 • Users can create soft links to files in mounted file systems but cannot create hard  

 links between file systems 

 



   

 

13.5 FILE ORGANIZATION: 

• Sequential—Records are placed in physical order. The "next" record is the one that 

physically follows the previous record. This organization is natural for files stored on 

magnetic tape, an inherently sequential medium. 

• Direct—Records are directly (randomly) accessed by their physical addresses on a direct 

access storage device (DASD). 

• Indexed sequential—Records on disk are arranged in logical sequence according to a 

key contained in each record. 

• Partitioned—This is essentially a file of sequential sub files. Each sequential subfile is 

called a member. The starting address of each member is stored in the file's directory. 

Partitioned files have been used to store program libraries or macro libraries. 

 

13.6 FILE ALLOCATION 

• File allocation 

 – Problem of allocating and freeing space on secondary storage is somewhat like  

 that experienced in primary storage allocation under variable-partition 

 multiprogramming 



 – Contiguous allocation systems have generally been replaced by more dynamic 

 noncontiguous allocation systems 

• Files tend to grow or shrink over time 

• Users rarely know in advance how large their files will be used. 

 

13.6.1 CONTIGUOUS FILE ALLOCATION 

 • Contiguous allocation 

  – Place file data at contiguous addresses on the storage device 

 – Advantages 

  • Successive logical records typically are physically adjacent to one another 

 – Disadvantages 

  • External fragmentation 

  • Poor performance can result if files grow and shrink over time 

  • If a file grows beyond the size originally specified and no contiguous free 

  blocks are available, it must be transferred to a new area of adequate size, 

  leading to additional I/O operations. 

 

13.6.2 LINKED-LIST NONCONTIGUOUS FILE ALLOCATION 

 • Sector-based linked-list noncontiguous file allocation scheme: 

  – A directory entry points to the first sector of a file 

 • The data portion of a sector stores the contents of the file 

 • The pointer portion points to the file’s next sector 

  – Sectors belonging to a common file form a linked list 

 • When performing block allocation, the system allocates blocks of contiguous 

 sectors (sometimes called extents) 

 • Block chaining 

  – Entries in the user directory point to the first block of each file 

  – File blocks contain: 

 • A data block 

 • A pointer to the next block 

 



   

 

 • When locating a record 

  – The chain must be searched from the beginning 

  – If the blocks are dispersed throughout the storage device (which is   

  normal), the search process can be slow as block-to-block seeks occur 

 • Insertion and deletion are done by modifying the pointer in the previous block 

 • Large block sizes 

  – Can result in significant internal fragmentation 

 • Small block sizes 

  – May cause file data to be spread across multiple blocks dispersed   

  throughout the storage device 

  – Poor performance as the storage device performs many seeks to access all  

  the records of a file 

 

13.6.3 TABULAR NONCONTIGUOUS FILE ALLOCATION 

  – Uses tables storing pointers to file blocks 

 • Reduces the number of lengthy seeks required to access a particular record 

  – Directory entries indicate the first block of a file 

  – Current block number is used as an index into the block allocation table to  

  determine the location of the next block. 

 • If the current block is the file’s last block, then its block allocation 



table entry is null 

 

 

• Pointers that locate file data are stored in a central location 

 – The table can be cached so that the chain of blocks that compose a file can be 

 traversed quickly 

 – Improves access times 

• To locate the last record of a file, however: 

 – The file system might need to follow many pointers in the block allocation table 

 – Could take significant time 

• When a storage device contains many blocks: 



 – The block allocation table can become large and fragmented 

 – Reduces file system performance 

• A popular implementation of tabular noncontiguous file allocation is Microsoft’s FAT file 

system. 

 

13.6.4 INDEXED NONCONTIGUOUS FILE ALLOCATION 

 • Indexed noncontiguous file allocation: 

  – Each file has an index block or several index blocks 

  – Index blocks contain a list of pointers that point to file data blocks 

  – A file’s directory entry points to its index block, which may reserve the last  

  few entries to store pointers to more index blocks, a technique called   

  chaining 

 • Primary advantage of index block chaining over simple linked-list 

implementations: 

 – Searching may take place in the index blocks themselves. 

 – File systems typically place index blocks near the data blocks they reference, so 

 the data blocks can be accessed quickly after their index block is loaded. 

 

 

 



   

 

• Index blocks are called inodes (i.e., index nodes) in UNIX-based operating systems 



  

 

13.7 FREE SPACE MANAGEMENT 

 • Some systems use a free list to manage the storage device’s free space 

  – Free list: Linked list of blocks containing the locations of free blocks 

  – Blocks are allocated from the beginning of the free list 

  – Newly freed blocks are appended to the end of the list 

 • Low overhead to perform free list maintenance operations 

 • Files are likely to be allocated in noncontiguous blocks 

 – Increases file access time 



 

 • A bitmap contains one bit for each block in memory 

  – ith bit corresponds to the ith block on the storage device 

 • Advantage of bitmaps over free lists: 

  – The file system can quickly determine if contiguous blocks are available at  

  certain locations on secondary storage 

 • Disadvantage of bitmaps: 

  – The file system may need to search the entire bitmap to find a free block,  

  resulting in substantial execution overhead 

 

  

13.8 FILE ACCESS CONTROL 

 • Files are often used to store sensitive data such as: 

  – Credit card numbers 

  – Passwords 

  – Social security numbers 

 • Therefore, they should include mechanisms to control user access to data. 

  – Access control matrix 

 – Access control by user classes 



13.8.1 ACCESS CONTROL MATRIX 

 • Two-dimensional access control matrix: 

  – Entry aij is 1 if user i is allowed access to file j 

  – Otherwise aij = 0 

 • In an installation with a large number of users and a large number of files, this 

 matrix generally would be large and sparse 

• Inappropriate for most systems 

  

13.8.2 ACCESS CONTROL BY USER CLASSES 

 • A technique that requires considerably less space is to control access to various 

 user classes 

 • User classes can include: 

  – The file owner 

  – A specified user 

  – Group 

  – Project 

  – Public 

 • Access control data 

 – Can be stored as part of the file control block 

– Often consumes an insignificant amount of space 
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REAL MEMORY ORGANIZATION AND MANAGEMENT 
 

9.1 INTRODUCTION 

 The organization and management of the real memory (also called main memory, 

physical memory or primary memory) of a computer system has been a major 

influence on operating systems design.  

 Secondary storage—most commonly disk and tape - provides massive, inexpensive 

capacity for the abundance of programs and data that must be kept readily available 

for processing. Main memory requires careful management. 

 

9.2 MEMORY ORGANIZATION 

 Main memory is still relatively expensive compared to secondary storage.  

 Also, today's operating systems and applications require ever more substantial 

quantities (Fig. 9.1).  

 For example, Microsoft recommends 256MB of main memory to efficiently run 

Windows XP Professional. 

 

 

9.3 MEMORY MANAGEMENT 

 Memory management strategies determine how a particular memory 

Organization performs under various loads.  

 Memory management is typically performed by both software and special-purpose 

hardware. 



 The memory manager determines how available memory space is allocated to 

processes and how to respond to changes in a process's memory usage.  

 It also interacts with special-purpose memory management hardware (if any is 

available) to improve performance. 

  – Performed by memory manager 

   • Which process will stay in memory? 

   • How much memory will each process have access to? 

   • Where in memory will each process go? 

9.4 MEMORY HIERARCHY 

 • Main memory 

  – Should store currently needed program instructions and data only 

 • Secondary storage 

  – Stores data and programs that are not actively needed 

 • Cache memory 

  – Extremely high speed 

  – Usually located on processor itself 

  – Most-commonly-used data copied to cache for faster access 

  – Small amount of cache still effective for boosting performance 

 • Due to temporal locality 

   

 



9.5 MEMORY MANAGEMENT STRATEGIES 

  They are divided into: 

  1. Fetch strategies 

  2. Placement strategies 

  3. Replacement strategies 

 Fetch strategies determine when to move the next piece of a program or data to 

main memory from secondary storage. We divide them into two types. 

i. Demand fetch strategies 

ii. Anticipatory fetch strategies. 

 

 Placement strategies determine where in main memory the system should place 

incoming program or data pieces. We consider the first-fit, best-fit, and worst-fit memory 

placement strategies. 

Replacement strategies 

 When memory is too full to accommodate a new program, the system must remove 

some (or all) of a program or data that currently resides in memory.  

 The system's replacement strategy determines which piece to remove. 

 

9.6 CONTIGUOUS VS. NONCONTIGUOUS MEMORY ALLOCATION 

 • Ways of organizing programs in memory 

 – Contiguous allocation 

  • Program must exist as a single block of contiguous addresses 

  • Sometimes it is impossible to find a large enough block 

  • Low overhead 

 – Noncontiguous allocation 

  • Program divided into chunks called segments 

  • Each segment can be placed in different part of memory 

  • Easier to find “holes” in which a segment will fit 

  • Increased number of processes that can exist simultaneously in 

 Memory offsets the overhead incurred by this technique. 

 

9.8 FIXED-PARTITION MULTIPROGRAMMING 

 A typical process would consume the processor time it needed to generate an 

input/output request; the process could not continue until the I/O finished. 



 To take maximum advantage of multiprogramming, several processes must reside in 

the computer's main memory at the same time.  

 Thus, when one process requests input/output, the processor may switch to 

another process and continue to perform calculations without the delay. 

 

 

  

 

 The system divides main memory into a number of fixed size partitions.  

 Each partition holds a single job, and the system switches the processor rapidly 

between jobs to create the illusion of simultaneity.  

 This technique enables the system to provide simple multiprogramming 

capabilities. 

 

   

 

 

 This restriction led to wasted memory.  



 If a job was ready to run and the program's partition was occupied, then that job 

had to wait, even if other partitions were available. 

 

 

   

 

 All the jobs in the system must run in partition 3 (i.e., the programs' instructions all 

begin at address c).  

 Because this partition currently is in use. all other jobs are forced to wait, even 

though the system has two other partitions in which the jobs could run (if they had 

been compiled for these partitions). 

 This scheme eliminates some of the memory waste inherent in multipro- operating 

system from the user process. 

 In a multiprogramming system, the system must protect the operating system from 

all user processes and protect each process from all the others. 

 

   

 



 The system can delimit each partition with two boundary registers low and high, 

also called the base and limit registers. 

 When a process issues a memory request, the system checks whether the requested 

address is greater than or equal to the process's low boundary register value and 

less than the process's high boundary register value (see the Anecdote, 

Compartmentalization). 

 If so, the system honors the request; otherwise, the system terminates the program 

with an error message. 

 

 Fixed-partition multiprogramming suffers from internal fragmentation, which 

occurs when the size of a process's memory and data is smaller than that of the partition in 

which the process executes. 

  INTERNAL FRAGMENTATION 

 

 

  

 

 

 
9.9 VARIABLE-PARTITION MULTIPROGRAMMING 

 The operating system designers decided, would be to allow a process to occupy only 

as much space as needed (up to the amount of available main memory). 

 This scheme is called variable-partition multiprogramming. 

 

 

 

 

 



9.9.1 VARIABLE-PARTITION CHARACTERISTICS 

 

 

   
 The queue at the top contains available jobs and information about their memory 

requirements.  

 The operating system makes no assumption about the size of a job. 

Holes 

 Variable-partition multiprogramming organizations do not suffer from internal 

fragmentation.  

 In variable partition multiprogramming, the waste does not become obvious until 

processes finish and leave holes in main memory. 

 

  

  



 

 The system can continue to place new processes in these holes.  

 However, as processes continue to complete, the holes get smaller, until every hole 

eventually becomes too small to hold a new process.  

 This is called external fragmentation. 

 The system then records in a free memory list either (1) that the system now has 

an additional hole or (2) that an existing hole has been enlarged. 

 By coalescing holes, the system reclaims the largest possible contiguous blocks of 
memory. 
 

   

 

  

 Another technique for reducing external fragmentation is called memory 

compaction, which relocates all occupied areas of memory to one end or the other 

of main memory. 

 

 Now all of the available free memory is contiguous, so that an available process can 

run if its memory requirement is met by the single hole that results from 

compaction. 

 Sometimes memory compaction is colorfully referred to as burping the memory. 

 More conventionally, it is called garbage collection. 

 



   

9.9.2 MEMORY PLACEMENT STRATEGIES 

  There are three strategies are used. 

– First-fit strategy 

 • Process placed in first hole of sufficient size found 

 • Simple, low execution-time overhead 

– Best-fit strategy 

 • Process placed in hole that leaves least unused space around it 

 • More execution-time overhead 

– Worst-fit strategy  

 • Process placed in hole that leaves most unused space around it 

 • Leaves another large hole, making it more likely that another process can fit in the  

     hole. 
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  VIRTUAL MEMORY MANAGEMENT 

 

11.1 INTRODUCTION 

 • Replacement strategy 

  – Technique a system employs to select pages for replacement when memory 

  is full 

  – Determines where in main memory to place an incoming page or segment 

 • Fetch strategy 

  – Determines when pages or segments should be loaded into main memory 

  – Anticipatory fetch strategies 

 • Use heuristics to predict which pages a process will soon reference and load those 

 pages or segments. 

 

11.5 PAGE REPLACEMENT 

 • When a process generates a page fault, the memory manager must locate 

referenced page in secondary storage, load it into page frame in main memory and update 

corresponding page table entry. 

 • Modified (dirty) bit 

  – Set to 1 if page has been modified; 0 otherwise 

  – Help systems quickly determine which pages have been modified 

 • Optimal page replacement strategy (OPT or MIN) 

  – Obtains optimal performance, replaces the page that will not be referenced  

  again until furthest into the future. 

 

11.6 PAGE-REPLACEMENT STRATEGIES 

 Each strategy is characterized by the heuristic it uses to select a page for 

replacement and the overhead it incurs. Some replacement strategies are intuitively 

appealing but lead to poor performance. 

 

11.6.1 RANDOM PAGE REPLACEMENT 

 • Random page replacement 

  – Low-overhead page-replacement strategy that does not discriminate  

      against particular processes. 



  – Each page in main memory has an equal likelihood of being selected for  

       replacement. 

  – Could easily select as the next page to replace the page that will be   

       referenced next. 

 

11.6.2 FIRST-IN-FIRST-OUT (FIFO) PAGE REPLACEMENT 

 A simple example of the FIFO strategy for a process which has been allocated three 

page frames.  

 The leftmost column contains the process's page-reference pattern.  

 Each row shows the state of the FIFO queue after each new page arrives; pages 

enter the tail of the queue on the left and exit the head on the right. 

 This would be a poor choice, because the page would be recalled to main memory 

 almost  immediately, resulting in an increased page-fault rate.  Modifications to 

FIFO: Second- Chance and Clock Page Replacement, FIFO forms the basis of various 

implemented page-replacement schemes. 

 

   

 

11.6.3 FIFO ANOMALY 

 The first table demonstrates how the reference pattern causes the system to load 

and replace pages (using FIFO) when the system allocates three page frames to the 

process. 



 The second table shows how the system behaves in response to the same reference 

pattern, but when four page frames have been allocated. 

 When the process executes with four pages in memory, it actually experiences one 

more page fault than when it executes with only three pages. 

 

  

 

11.6.4 LEAST-RECENTLY USED (LRU) PAGE REPLACEMENT 

 – Exploits temporal locality by replacing the page that has spent the longest time in  

     memory without being referenced 

 – Can provide better performance than FIFO 

 – Increased system overhead 

 – LRU can perform poorly if the least-recently used page is the next page to be  

  referenced by a program that is iterating inside a loop that references several pages 

 

 



 

 

 

 

11.6.5 LEAST-FREQUENTLY-USED (LFU) PAGE REPLACEMENT 

 – Replaces page that is least intensively referenced 

 – Based on the heuristic that a page not referenced often is not likely to be    

      referenced in the future 

 – Could easily select wrong page for replacement 

 – A page that was referenced heavily in the past may never be referenced again, but    

      will stay in memory while newer, active pages are replaced. 

 

11.6.6 NOT-USED-RECENTLY (NUR) PAGE REPLACEMENT 

 The NUR strategy is implemented using the following two hardware bits per page 

table entry: 

 • referenced bit—set to 0 if the page has not been referenced and set to one 

   if the page has been referenced. 



 • modified bit—set to 0 if the page has not been modified and set to 1 if the 

    page has been modified. 

 The referenced bit is sometimes called the accessed bit. 

 The pages in the lowest-numbered groups should be replaced first, and those in the 

highest-numbered groups last. Pages within a group are selected randomly for 

replacement. 

 Note that Group 2 seems to describe an unrealistic situation—namely, pages that 

have been modified but not referenced.  

 This occurs because of the periodic resetting of the referenced bits. 

 

11.6.7 MODIFICATION TO FIFO: SECOND-CHANCE AND CLOCK PAGE REPLACEMENT 

 • Second chance page replacement 

  – Examines referenced bit of the oldest page 

   • If it’s off 

  – The strategy selects that page for replacement 

   • If it’s on 

  – The strategy turns off the bit and moves the page to tail of FIFO queue 

  – Ensures that active pages are the least likely to be replaced 

 • Clock page replacement 

  – Similar to second chance, but arranges the pages in circular list instead of  

       linear list. 

 

11.6.8 FAR PAGE REPLACEMENT 

 Each vertex in the access graph represents one of the process's pages.  

 An edge from vertex v to vertex w means that the process can reference page w after 

it has referenced page v.  

 For example, if an instruction on page v references data on page w, there will be a 

directed edge from vertex v to vertex w.  

 Similarly, if a function call to page x returns to page y, there will be an edge from 

vertex x to vertex y.  



 The access graph indicates that, after the process references page B, it will next 

reference either page A, C, D or E, but it will not reference page G before it has 

referenced 

 page E.  

  

 

   

 

 The field of graph theory provides algorithms for building and searching the 

 kinds of graphs in the far strategy. 

 However, largely due t its complexity and execution-time overhead, far has not been 

implemented in real systems. 

 

11.8 PAGE-FAULT-FREQUENCY (PFF) PAGE REPLACEMENT 

 The page-fault-frequency (PFF) algorithm adjusts a process's resident page set  

 based on the frequency at which the process is faulting.   

 Alternatively, PFF may adjust a process's resident page set based on the time 

between page faults, called the process's interfault time. 

 

 



 PFF has a lower overhead than working set page replacement because it adjusts 

the resident page set only after each page fault; a working set mechanism must 

operate after each memory reference. 

 A benefit of PFF is that it adjusts a process's resident page set dynamically, in 

 response to the process's changing behavior.  

 If a process is switching to a larger working set, then it will fault frequently, and PFF 

will allocate more page frames. 

 

11.9 PAGE RELEASE 

 • Inactive pages can remain in main memory for a long time until the management 

strategy detects that the process no longer needs them 

  – One way to solve the problem 

 • Process issues a voluntary page release to free a page frame that it knows it no 

longer needs 

 • Eliminate the delay period caused by letting process gradually pass the page from 

its working set 

 • The real hope is in compiler and operating system support. 

 

11.10 PAGE SIZE 

 • Some systems improve performance and memory utilization by providing multiple 

page sizes 

  – Small page sizes 

 • Reduce internal fragmentation 

 • Can reduce the amount of memory required to contain a process’s working set 

 • More memory available to other processes 

  – Large page size 

 • Reduce wasted memory from table fragmentation 

 • Enable each TLB entry to map larger region of memory, improving performance 

 • Reduce number of I/O operations the system performs to load a process’s working 

set into memory 

  – Multiple page size 

 • Possibility of external fragmentation 
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